Exercise 1B

1 a $y=x^{2}-5 x+6$
$y=(x-3)(x-2) \quad$ factorising to find when the curve cuts the x-axis
The curve is a quadratic graph with a positive x^{2} coefficient, so it is a parabola with a minimum. The graph crosses the x-axis at $(3,0)$ and $(2,0)$ and the y-axis at $(0,6)$.
So the sketch is:

b $y=x^{3}+2 x^{2}-3 x$
$y=x\left(x^{2}+2 x-3\right)$
$y=x(x-1)(x+3)$
The curve is a cubic graph with a positive x^{3} coefficient, so as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow-\infty, y \rightarrow-\infty$ and the graph crosses x-axis at $(-3,0),(0,0)$ and $(1,0)$.
So the sketch is:

1 c $y=\frac{1}{x+1}$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=0$ (as $x \rightarrow \pm \infty, y \rightarrow 0$) and a vertical asymptote at $x=-1$ (as $x \rightarrow-1, y \rightarrow \pm \infty)$. The graph crosses the y-axis at $(0,1)$.
So the sketch is:

d $y=\frac{4 x}{1-2 x}$
$y=\frac{4 x}{1-2 x}=-2\left(1-\frac{1}{1-2 x}\right) \quad$ rearranging to see how the curve behaves as $x \rightarrow \infty$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=-2$ (as $x \rightarrow \pm \infty, y \rightarrow-2$) and a vertical asymptote at $x=\frac{1}{2}\left(\right.$ as $\left.x \rightarrow \frac{1}{2}, y \rightarrow \pm \infty\right)$. The graph crosses the axes at $(0,0)$.
So the sketch is:

Further Pure Maths 2

2 a $y=x^{2}-2 x+1$
$y=(x-1)(x-1)=(x-1)^{2}$
The curve is a quadratic graph with a positive x^{2} coefficient, so it is a parabola and it has a minimum at $(1,0)$. The graph crosses the y-axis at $(0,1)$.

$$
\begin{aligned}
& y=4-4 x^{2} \\
& y=4\left(1-x^{2}\right)=-4(x-1)(x+1)
\end{aligned}
$$

The curve is a quadratic graph with a negative x^{2} coefficient, so it is a parabola and it has a maximum at $(0,4)$. The graph crosses the x-axis at $(-1,0)$ and $(1,0)$.

So the sketch of both curves is:

Further Pure Maths 2

2 b $y=x$
The graph is a straight line with a positive gradient of 1 that passes through $(0,0)$.
The curve $y=\frac{1}{x}$ has a reciprocal graph.
There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=0$ (as $x \rightarrow 0, y \rightarrow \pm \infty$). The graph does not cut the coordinate axes.

So the sketch of both curves is:

Further Pure Maths 2

2 c $y=2 x-1$
The graph is a straight line with a positive gradient of 2 that passes through $(0,-1)$ and $\left(\frac{1}{2}, 0\right)$

$$
y=\frac{3}{x-2}
$$

The curve is a reciprocal graph. There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=2($ as $x \rightarrow 2, y \rightarrow \pm \infty)$. The graph crosses the y-axis at $\left(0,-\frac{3}{2}\right)$.

So the sketch of both curves is:

Further Pure Maths 2

2 d $y=4-3 x$
The graph is a straight line with a negative gradient that passes through $(0,4)$ and $\left(\frac{4}{3}, 0\right)$
$y=\frac{x}{4 x-2}$
$y=\frac{x}{4 x-2}=\frac{1}{4}\left(\frac{4 x}{4 x-2}\right)=\frac{1}{4}\left(1+\frac{2}{4 x-2}\right) \quad$ rearranging to see how the curve behaves as $x \rightarrow \infty$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=\frac{1}{4}\left(\right.$ as $\left.x \rightarrow \pm \infty, y \rightarrow \frac{1}{4}\right)$ and a vertical asymptote at $x=\frac{1}{2}\left(\right.$ as $\left.x \rightarrow \frac{1}{2}, y \rightarrow \pm \infty\right)$. The graph crosses the axes at $(0,0)$.

So the sketch of both curves is:

3 a The x-coordinate of the point of intersection is found by equating the right-hand side of the two equations.
$\frac{2}{x+1}=\frac{1}{x-3}$
$2(x-3)=x+1$
$2 x-x=1+6$
$\Rightarrow x=7$
The y-coordinate of the point of intersection is found by substituting the x-coordinate into either of the two equations.
$y=\frac{1}{x-3}=\frac{1}{7-3}=\frac{1}{4}$
Therefore the functions intersect at (7, $\frac{1}{4}$)

Further Pure Maths 2

3 b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
$x-2=\frac{3 x}{x+2}$
$(x-2)(x+2)=3 x$
$x^{2}-3 x-4=0$
$(x-4)(x+1)=0$
$\Rightarrow x=4,-1$
The y-coordinates of the points of intersection are found by substituting the x-coordinates into either of the two equations.
For $x=4, y=x-2=4-2=2$
For $x=-1, y=x-2=-1-2=-3$
Therefore the functions intersect at $(4,2)$ and $(-1,-3)$
c The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

$$
\begin{aligned}
& x^{2}-4=\frac{4(x+2)}{x-2} \\
& (x+2)(x-2)=\frac{4(x+2)}{x-2} \\
& (x+2)(x-2)^{2}=4(x+2) \\
& (x+2)\left((x-2)^{2}-4\right)=0 \\
& (x+2)\left(x^{2}-4 x+4-4\right)=0 \\
& (x+2)\left(x^{2}-4 x\right)=0 \\
& (x+2) x(x-4)=0 \\
& \Rightarrow x=-2,0,4
\end{aligned}
$$

The y-coordinates of the points of intersection are found by substituting the x-coordinates into either of the two equations.
For $x=-2, y=x^{2}-4=(-2)^{2}-4=0$
For $x=0, y=x^{2}-4=0^{2}-4=-4$
For $x=4, y=x^{2}-4=4^{2}-4=12$
Therefore the functions intersect at $(-2,0),(0,-4)$ and $(4,12)$

Further Pure Maths 2

4 a $y=x-1$
The graph is a straight line with a positive gradient of 1 that passes through $(0,-1)$ and $(1,0)$
$y=\frac{4}{x-1}$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=1($ as $x \rightarrow 1, y \rightarrow \pm \infty)$. The graph crosses the y-axis at $(0,-4)$.

So the sketch of both curves is:

b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
$x-1=\frac{4}{x-1}$
$x^{2}-2 x+1=4$
$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$
$\Rightarrow x=-1,3$

The y-coordinates of the points of intersection are found by substituting the x-coordinates into either of the two equations.
For $x=3, y=x-1=3-1=2$
For $x=-1, y=x-1=-1-1=-2$
Therefore the functions intersect at $(-1,-2)$, and $(3,2)$
c The solution to the inequality is when the line $y=x-1$ lies above the curve $y=\frac{4}{x-1}$ Using the sketch from part a and the points of intersection from part \mathbf{b} this occurs when $-1<x<1$ or $x>3$. The solution in set notation is $\{x:-1<x<1\} \cup\{x: x>3\}$

Further Pure Maths 2

5 a $\quad y=\mathrm{f}(x)=\frac{3}{x^{2}}$
This curve is always positive $(y>0)$, with a horizontal asymptote at $y=0$ (as $x \rightarrow \pm \infty, y \rightarrow 0$) and a vertical asymptote at $x=0$ (as $x \rightarrow 0, y \rightarrow \infty$). The graph does not cut the coordinate axes.
$y=\mathrm{g}(x)=\frac{2}{3-x}$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=3$ (as $x \rightarrow 3, y \rightarrow \pm \infty)$. The graph crosses the y-axis at $\left(0, \frac{2}{3}\right)$.

So the sketch of both curves is:

b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

$$
\begin{aligned}
& \frac{3}{x^{2}}=\frac{2}{3-x} \\
& 3(3-x)=2 x^{2} \\
& 2 x^{2}+3 x-9=0 \\
& (2 x-3)(x+3)=0 \\
& \Rightarrow x=-3, \frac{3}{2}
\end{aligned}
$$

For $x=\frac{3}{2}, y=\frac{3}{x^{2}}=\frac{3}{\left(\frac{3}{2}\right)^{2}}=\frac{4}{3}$
For $x=-3, y=\frac{3}{x^{2}}=\frac{3}{(-3)^{2}}=\frac{1}{3}$
Therefore the points of intersection are $\left(-3, \frac{1}{3}\right)$ and $\left(\frac{3}{2}, \frac{4}{3}\right)$

Further Pure Maths 2

5 c The solution to the inequality is when the curve $y=\frac{3}{x^{2}}$ lies above the curve $y=\frac{2}{3-x}$
Using the sketch from part a and the points of intersection from part \mathbf{b} this occurs when

$$
-3<x<\frac{3}{2} \text { or } x>3
$$

So the solution in set notation is $\left\{x:-3<x<\frac{3}{2}\right\} \cup\{x: x>3\}$
6 a $y=\frac{3 x}{2-x}$
$y=\frac{3 x}{2-x}=-3\left(1-\frac{2}{2-x}\right)$
rearranging to see how the curve behaves as $x \rightarrow \infty$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=-3$ (as $x \rightarrow \pm \infty, y \rightarrow-3$) and a vertical asymptote at $x=2($ as $x \rightarrow 2, y \rightarrow \pm \infty)$. The graph crosses the axes at $(0,0)$.
$y=\frac{4 x}{(x-1)^{2}}$
There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=1$ (as $x \rightarrow 1, y \rightarrow \infty$). The graph crosses the axes at $(0,0)$. Note also that as the denominator is always positive (for $x \neq 1$) then if $x>0$, then $y>0$; and if $x<0$, then $y<0$.

So the sketch of both curves is:

Further Pure Maths 2

6 b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
$\frac{3 x}{2-x}=\frac{4 x}{(x-1)^{2}}$
$3 x(x-1)^{2}=4 x(2-x)$
$x\left(3 x^{2}-6 x+3-8+4 x\right)=0$
$x\left(3 x^{2}-2 x-5\right)=0$
$x(3 x-5)(x+1)=0$
$\Rightarrow x=-1,0, \frac{5}{3}$
For $x=-1, y=\frac{3 x}{2-x}=\frac{3 \times-1}{2-(-1)}=-1$
For $x=0, y=0$
For $x=\frac{5}{3}, y=\frac{3 x}{2-x}=\frac{3 \times \frac{5}{3}}{2-\frac{5}{3}}=15$
Therefore the points of intersection are $(-1,-1),(0,0)$ and $\left(\frac{5}{3}, 15\right)$
c The solution to the inequality is when the curve $y=\frac{4 x}{(x-1)^{2}}$ lies on or above the curve $y=\frac{3 x}{2-x}$ Using the sketch from part a and the points of intersection from part \mathbf{b} this occurs when

$$
x \leqslant-1 \text { or } 0 \leqslant x<1 \text { or } 1<x \leqslant \frac{5}{3} \text { or } x \geqslant 2
$$

Note that there are four intervals as the inequality is not defined when $x=1$, and as the inequality is less than or equal to (\leqslant), the values of x at the points of intersection are included in the solution set (i.e. when $x=-1,0$ or $\frac{5}{3}$).

Further Pure Maths 2

7 a $y=x-2$
The graph is a straight line with a positive gradient of 1 that passes through $(0,-2)$ and $(2,0)$
$y=\frac{6(2-x)}{(x+2)(x-3)}$
The graph crosses the y-axis at $(0,-2)$ and the x-axis at $(2,0)$. There are vertical asymptotes at $x=3$ and $x=-2$. There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$.
Note the regions where y is positive, and where it is negative: for $x>3, y<0$; for $2<x<3, y>0$; for $-2<x<2, y<0$; for $x<-2, y>0$.

So the sketch of both curves is:

b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
$x-2=\frac{6(2-x)}{(x+2)(x-3)}$
$(x-2)(x+2)(x-3)=-6(x-2)$
$(x-2)\left(x^{2}-x-6+6\right)=0$
$(x-2) x(x-1)=0$
$\Rightarrow x=0,1,2$
For $x=2, y=x-2=2-2=0$
For $x=0, y=x-2=0-2=-2$
For $x=1, y=x-2=1-2=-1$
Therefore the points of intersection are $(0,-2),(1,-1)$ and $(2,0)$
c The solution is when the line $y=x-2$ lies on or below the curve $y=\frac{6(2-x)}{(x+2)(x-3)}$
Using the sketch from part a and the points of intersection from part \mathbf{b} this occurs when

$$
x<-2 \text { or } 0 \leqslant x \leqslant 1 \text { or } 2 \leqslant x<3
$$

Further Pure Maths 2

8 a $y=\frac{1}{x}$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=0($ as $x \rightarrow \pm \infty, y \rightarrow 0)$ and a vertical asymptote at $x=0$ (as $x \rightarrow 0, y \rightarrow \pm \infty$). The graph does not cross the axes.
$y=\frac{x}{x+2}$
$y=\frac{x}{x+2}=\frac{x+2-2}{x+2}=1-\frac{2}{x+2} \quad$ rearranging to see how the curve behaves as $x \rightarrow \infty$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=1$ (as $x \rightarrow \pm \infty, y \rightarrow 1$) and a vertical asymptote at $x=-2($ as $x \rightarrow-2, y \rightarrow \pm \infty)$. The graph crosses the axes at $(0,0)$.

So the sketch of both curves is:

b The x-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
$\frac{1}{x}=\frac{x}{x+2}$
$x+2=x^{2}$
$x^{2}-x-2=0$
$(x-2)(x+1)=0$
$\Rightarrow x=-1,2$
For $x=2, y=\frac{1}{x}=\frac{1}{2}$
For $x=-1, y=\frac{1}{x}=-1$
Therefore the points of intersection are $(-1,-1)$ and $\left(2, \frac{1}{2}\right)$
c The solution is when the curve $y=\frac{1}{x}$ lies above the curve $y=\frac{x}{x+2}$
Using the sketch from part \mathbf{a} and the points of intersection from part \mathbf{b} this occurs when

$$
-2<x<-1 \text { or } 0<x<2
$$

Further Pure Maths 2

Challenge

a The circle has its centre at $(2,4)$. The radius of the circle is $\sqrt{10}$.
When $y=0,(x-2)^{2}+(-4)^{2}=10 \Rightarrow(x-2)^{2}=-6$. There are no real solutions, so the circle does not intersect the x-axis.
When $x=0,(-2)^{2}+(y-4)^{2}=10 \Rightarrow(y-4)^{2}=6 \Rightarrow y=4 \pm \sqrt{6}$.
So the circle intersects the y-axis at $(0,4-\sqrt{6})$ and $(0,4+\sqrt{6})$
So the sketch is:

Further Pure Maths 2

Challenge

b The x-coordinates of the points of intersection are found by substituting the equation for y into the equation of the circle.
$(x-2)^{2}+\left(\frac{4 x-5}{x-2}-4\right)^{2}=10$
$(x-2)^{2}+\left(\frac{4 x-5-4(x-2)}{x-2}\right)^{2}=10$
$(x-2)^{2}+\left(\frac{4 x-5-4 x+8}{x-2}\right)^{2}=10$
$(x-2)^{2}+\left(\frac{3}{x-2}\right)^{2}=10$
$(x-2)^{4}+9=10(x-2)^{2}$
$(x-2)^{4}-10(x-2)^{2}+9=0$
$\left((x-2)^{2}-9\right)\left((x-2)^{2}-1\right)=0$
$\left(x^{2}-4 x-5\right)\left(x^{2}-4 x+3\right)=0$
$(x-5)(x+1)(x-3)(x-1)=0$
$\Rightarrow x=-1,1,3,5$
For $x=-1, y=\frac{4 x-5}{x-2}=\frac{4 \times-1-5}{-1-2}=3$
For $x=1, y=\frac{4 x-5}{x-2}=\frac{4 \times 1-5}{1-2}=1$
For $x=3, y=\frac{4 x-5}{x-2}=\frac{4 \times 3-5}{3-2}=7$
For $x=5, y=\frac{4 x-5}{x-2}=\frac{4 \times 5-5}{5-2}=5$
Therefore the points of intersection are $(-1,3),(1,1),(3,7)$ and $(5,5)$

Challenge

c $y=\frac{4 x-5}{x-2}$
$y=\frac{4 x-5}{x-2}=4\left(\frac{x-\frac{5}{4}}{x-2}\right)=4\left(\frac{x-2+\frac{3}{4}}{x-2}\right)=4\left(1+\frac{3}{4(x-2)}\right)$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=4$ (as $x \rightarrow \pm \infty, y \rightarrow 4$) and a vertical asymptote at $x=2($ as $x \rightarrow 2, y \rightarrow \pm \infty)$. The graph crosses the axes at $\left(\frac{5}{4}, 0\right)$ and $\left(0, \frac{5}{2}\right)$.

So the sketch of both curves is:

Further Pure Maths 2

Challenge

d The inequality holds when the curve $y=\frac{4 x-5}{x-2}$ lies within the circle.
Using the sketch from part \mathbf{c} and the points of intersection from part \mathbf{b} this occurs when
$-1<x<1$ or $3<x<5$

Alternatively, the problem can be tackled algebraically by solving
$(x-2)^{2}+\left(\frac{4 x-5}{x-2}-4\right)^{2}<10$
$(x-2)^{2}+\left(\frac{4 x-5+4(x-2)}{x-2}\right)^{2}<10$
$(x-2)^{2}+\left(\frac{3}{x-2}\right)^{2}<10$
Multiply both sides by $(x-2)^{2}$ and following the same algebraic steps as part \mathbf{b} gives
$(x-5)(x+1)(x-3)(x-1)<0$
So the critical values are $x=-1,1,3$ or 5
The curve $y=(x+1)(x-1)(x-3)(x-5)$ is a quartic graph with positive x^{4} coefficient, so the curve starts in the top left and ends in the top right and passes through $(-1,0),(1,0),(3,0)$ and $(5,0)$. A sketch of the curve is

The solution to corresponds to the section of the graph that is below the x-axis.
So the solution is $-1<x<1$ or $3<x<5$

